Resisting Broken Windows:
The Effect of Neighborhood Disorder on Political Behavior

September 18, 2019

Abstract

Concurrent housing and opioid crises have increased exposure to street-crime, homelessness and addiction in American cities. What are the political consequences of this increased neighborhood disorder? We examine a change in social context following the relocation of homelessness and drug treatment services in Boston. In 2014, an unexpected bridge closing forced nearly 1,000 people receiving emergency shelter or addiction treatment to relocate from an island in the Boston Harbor to mainland Boston, causing sustained increases in drug-use, loitering, and other features of neighborhood disorder. Residents near the relocation facilities mobilized to maintain order in their community. In the subsequent Mayoral election, their turnout grew 9 percentage points while participation in state and national elections was unchanged. Moreover, increased turnout favored the incumbent Mayor, consistent with voter learning about candidate quality following local shocks. Voters responded to neighborhood changes at the relevant electoral scale and rewarded responsive politicians.

Keywords: Neighborhood disorder, local politics, political behavior, voter attribution
Concurrent homelessness and drug crises have raged across many North American cities, sparking contentious debates about the appropriate political response (Sperance 2018, Whelan 2018, Wing 2019). The spatially concentrated nature of these crises – reified by tent encampments, shelters, drug clinics, and syringes – portend particular worry because these visible elements of disorder encroach on the spaces lived and traveled on by citizens. Consequently, the governmental response to homelessness and addiction has been a central question in dozens of recent local elections (Appendix Table A1) and defined the tenures of incumbent mayors across the country (Halverstadt 2018, Malas & Lazo 2018). This anxiety around exposure to homelessness and addiction reflects the longstanding concern “that the street is disorderly, a source of distasteful, worrisome encounters” (Wilson 1975, 65). Neighborhood disorder – often metaphorically described as “broken-windows” – has for decades motivated aggressive “quality-of-life” policing and dominated mayoral elections (Vitale 2008).\footnote{For examples, concerns about rampant disorder in the early 1990s propelled “law-and-order” mayoral candidates like New York City’s Rudy Guliani and San Francisco’s Frank Jordan to unseat progressive incumbents (Vitale 2008).} Despite the first-order importance of order maintenance to local politics, political science has been largely silent about its effect at the ballot box.\footnote{“Quality of life and disorder continue to be among the most urgent issues local politicians address, regardless of party affiliation” (Kelling & Coles 1997, 14). Michener (2013) uses the Chicago Neighborhood Survey to examine the relationship between disorder, attending community meetings, and contacting local officials.}

Yet a strong theoretical basis suggests that exposure to neighborhood disorder will increase political participation and influence vote choice, particularly in local elections. While political opinion in the United States is increasingly nationalized – and hence decoupled from spatial variation in issue impacts – proximity to crime remains an important determinant of attitudes towards crime and policing (Hjorth 2017, Hopkins 2018). Street-level encounters with homeless and drug-using populations heighten fear of crime (Wilson 1968, Vitale 2008) and provoke discomfort and disgust among many individuals (Clifford & Piston 2017). Fear and discomfort stemming from repeated exposure to disorder likely impels residents to lobby police and local officials to address disorder and to organize new forms of social capital to amplify their collective voice. Thus, we hypothesize that residents will respond to neighborhood disorder by mobilizing to protect their neighborhood, resulting in higher levels of political participation, and that the intensity of the political response will increase with proximity to disorder (Tobler 1970).

To test these hypotheses, we examine an abrupt relocation of homeless and drug-using populations in Boston to identify how disorder affects voting behavior. We combine rich contextual analysis of the case with large-scale quantitative analyses of (1) everyday political participation through non-emergency and emergency requests for government services, (2) individual-level voting data measuring participation in local, state, and national elections, and (3) electoral choices in Mayoral and Presidential elections. We find that requests for government services increased, turnout increased in local elections (but not in state or
national ones), and, contrary to our expectations, affected precincts swung towards the incumbent Mayor, but showed no changes in the next Presidential election.

These results provide the first systematic evidence that increased disorder alters voter behavior, increasing turnout and changing vote choice. We further show that changes in neighborhood disorder cause individual-level political responses at local, but not state or national, levels. In this case, voters responded solely at the relevant electoral scale – the local government, responsible for policing, public works, and siting shelters and drug treatment facilities. Because the relocation of homeless populations is a pervasive political issue (McKellar 2017, Smith & Smith 2018, Steinbuch 2019, Billings 2019), our finding that increased disorder provokes a substantial local political response generalizes to a large set of cases involving the construction of new facilities (Innes 2019) or displacing existing drug or homeless encampments (Orange 2013, Kim 2017). Moreover, these results suggest that “man-made” shocks do not always produce anti-incumbent electoral effects. The abrupt relocation we study is neither a natural disaster nor an economic downturn but shares with these events a complex causal origin, high salience, and an opportunity to learn about the incumbent’s quality through her response (Ashworth et al. 2018). Consistent with studies of natural disasters (Healy & Malhotra 2009, 2010), we find the incumbent benefited from adeptly managing the fallout.

The Politics of Disorder

Disorder comprises the physical (e.g. litter, graffiti, vacant buildings) and behavioral (e.g. public drug use, loitering, panhandling) features of neighborhoods that suggest the deterioration of social control and diminish quality of life (Gracia 2014, 4325). More informally, disorder tracks the “readily observable” features of “bad” neighborhoods (Michener 2013). Neighborhood residents report highly similar levels of disorder regardless of race, class, homeownership, and age (Skogan 1992, 54-77). A rich literature in sociology and public health suggests that disorder forms an important part of neighborhood context, associated with fear of crime (Hinkle & Weisburd 2008), distrust of neighbors (Ross & Jang 2000), stress (Latkin & Curry 2003), and reduced outdoor exercise (Molnar et al. 2004).

Disorder is linked to the political process through the government’s role in providing safety and sanitation on the streets and sidewalks and in providing shelter and social services to disadvantaged people. Political participation can pressure governments to provide additional services to manage disorder, such as policing. A community leader in Ridgewood, Queens explains, “When you hear of a drug location, you have to scream bloody murder to the police captain until you get results” (Kelling & Coles 1997, 56). Indeed, maintaining order is a central demand that citizens place on their police, and police foot patrols are a common response to these demands (Wilson 1968, 1975). Moreover, political action can pressure governments to devote
additional resources towards managing public streets and sidewalks to reduce physical features of disorder like discarded needles (Melendez 2018) and human feces (Tyler 2018). Lastly, political action can disperse sources of disorder like tent encampments (Holland 2018) and halt or delay the construction of new facilities perceived to herald disorder (Bittle 2017) or push for the construction of such facilities elsewhere.

Because people are more likely to participate in politics when the benefits exceed the costs (Riker & Ordeshook 1968), we expect that disorder will lead to greater political participation. Our argument proceeds as follows: disorder diminishes quality-of-life and is linked to the political process through the provision of government services like assistance to the poor, policing, and sanitation. Consequently, citizens will become involved in politics to compel government officials to manage disorder. In other words, the instrumental benefits of participation increase as disorder increases. Dahl (1961) succinctly captures the essence of our argument in his account of neighborhood resistance to building metal-roof apartments in mid-century New Haven. Faced with what they perceived to be the existential threat of “slum-housing” development, residents of the Hill Neighborhood saw their fate linked with the political approval of the development’s zoning permit. Organizing to pressure the city to deny a permit for the development, they formed a neighborhood association, raised money to mount a legal defense, and protested at city meetings (Dahl 1961, 193-197).

Living in a neighborhood marked by features of disorder such as street-crime, vagrancy, littered syringes, and public drug use is a source of aggravation, fear, and disgust for many residents (Skogan 1992, Michener 2013). As one Seattle resident explains, “There’s a level of anxiety having a homeless camp on the other side of my hedge. It gets higher as the garbage grows” (Wing 2019). Disorder portends a more general threat of neighborhood decay (Skogan 1992), and neighborhoods with high-levels of disorder like Philadelphia’s Kensington (Whelan 2018) or Portland’s Bayside (Billings 2018) are often described as “under siege.” Feelings of threat may increase the benefits of political participation to the extent that residents believe that relief comes from government intervention.\(^3\)

Threats to the neighborhood can also mobilize residents to organize in defense of the community as they see it, creating new forms of social capital that amplify the collective voice (Orbell & Uno 1972, Hansen 1985). For example, people who perceive more disorder in their community are also more likely to attend community meetings (Michener 2013). The development or renewal of civic organizations, in turn, alters the calculus of political behavior in favor of more participation: group membership subsidizes information, increases mobilization, and provides opportunities for honing civic skills (Leighley 1996).

In addition to these instrumental reasons, disorder may induce expressive political participation (Schuessler 2000) in the same way that crime victimization induces participation, providing an outlet for victims of crime

\(^3\)Political scientists have long argued that the distribution of racial groups across space shapes inter-group conflict and political behavior through similar threat mechanisms (Key 1949, Enos 2014, 2015, Anoll 2018).
to “move beyond fear and submission” and reinvent themselves as organizers and activists (Bateson 2012, 572). A San Francisco resident who became an activist on local street homelessness described her persistent reporting of unseemly street behavior as providing a sense of control over an unsettling environment. “I'm so tired of the complacency, of people saying, ‘There's nothing we can do’... The one thing we can do is make noise” to say “This isn't OK” (Knight 2015).

This discussion indicates that increased disorder should provoke a sharp political response. Disorder portends both fear of crime and a more general neighborhood deterioration (Skogan 1992), and resolution of these fears are linked to the political process through government provision of public safety, sanitation, and social services to manage disorder. Consequently, political action provides both the means for residents to impel government to better manage disorder and a sense of control amid the chaos. These theoretical considerations lead to the following hypothesis:

H1: Increased neighborhood disorder will increase political participation.

Changes in neighborhood disorder may also affect vote choice. Local voters may blame the elected officials who presided during the changes and vote against those incumbents in subsequent elections (Hopkins & Pettingill 2018). Anecdotal evidence suggests that voters punished incumbent Mayors who failed to manage growing disorder in the 1990s (Vitale 2008). More generally, a robust literature documents retrospective voting in American elections, as voters consider changes in their own lives during an incumbent's tenure to assess candidate performance and inform their vote choices (Fiorina 1981, Healy & Malhotra 2013, Malhotra & Margalit 2014). As a Pomona, California City Councilor explains, “If [the new shelter] doesn’t work” to ease concerns about homelessness, “we’re all going to get voted out” (Walker 2017). More recent literature assesses whether natural disasters and other “shocks” influence incumbent electoral fortunes (Achen & Bartels 2016, Fowler & Hall 2018). Events outside the direct control of a politician still offer an opportunity for rational voters to learn about the competence of their elected official through her response, potentially shaping re-election prospects (Ashworth et al. 2018). When neighborhood quality-of-life declines during the tenure of the incumbent, voters may learn that the incumbent is not equipped to deal with the problem and instead support a potentially higher-quality challenger. Consequently, both simple and sophisticated conceptions of retrospective voting generate our second hypothesis:

H2: Increased neighborhood disorder will increase anti-incumbent voting.

Hypotheses 1 and 2 predict that changes in neighborhood disorder will a provoke political response. But the mechanisms through which it does so are a function of individual geographic proximity to neighborhood changes. Those living closest to sources of neighborhood disorder will be those most affected by it; for
example, the effect of homeless shelter openings on property crimes are concentrated very close to the shelter and decay beyond 400 meters (Faraji et al. 2018). Thus, threat perception, and ensuing political response, should intensify with proximity to the sources of neighborhood disorder (Enos 2017). This expectation is consistent with the literature on geography and group threat, and is derived from Tobler’s (1970) first law of geography: “everything is related to everything else, but near things are more related than distant things.” Testing this hypothesis speaks to whether residents are reacting to real changes in their everyday experience (“objective” disorder) or their perceptions of changes from local media and politicians (“subjective” disorder) (Michener 2013). We formalize this intuition as hypothesis three:

H3: Treatment effects will increase with proximity to the affected sites.

We test these hypotheses by measuring changes in political behavior in national, statewide, and local elections before-and-after a change in neighborhood disorder. Estimating effects at different electoral scales provides insight into whether the political response to disorder is targeted at the level of government closest to management of the problem (Larsen 2018) or spread across all levels of government (Sances 2017, Larsen et al. 2019) with implications for voter rationality and retrospective voting.

Research Design

To test the effect of neighborhood disorder on political participation, we analyze an abrupt change in the geographic distribution of homeless and drug-using populations in the city of Boston, detailed in Figure 1. For decades, Long Island, an island located in the Boston Harbor, was the hub of the city’s social-services, including the city’s largest homeless shelter and most of its addiction treatment services (BHCHP 2014, Ramirez 2015b). That changed when an inspector unexpectedly condemned the bridge connecting the island with the mainland in October 2014. Following the condemnation of the bridge, the city of Boston abruptly terminated the social services provided on the island, including 57% of the city’s total substance use treatment beds (BHCHP 2014). About 1,000 people receiving daily services on the island were displaced, including 450 homeless people previously staying in the Long Island Homeless Shelter and another 300 people in recovery living in the various residential detoxification facilities and transitional housing programs.

4 Closure of the island was a shock to service providers and residents; Jonathan Scott, president of a recovery program for women on the island, said “When we were first told we had to leave, we didn’t know the reason” (Irons & Dungca 2014). Press reports note that “medications, journals, and plates of food that had just been warmed were all left behind” (Irons & Dungca 2014). The city had previously announced plans to begin repairing the 63-year old bridge in September. An engineer involved with the reconstruction project told local media that reconstruction would only require partial lane closures, and “under no circumstance will the whole bridge be closed” (Burrell 2014).
Figure 1: Key Events in the Long Island Shock

1951 - City builds a bridge connecting Long Island in the Boston Harbor to the mainland.
1983 - City opens its largest homeless shelter and addiction treatment services on island.

Oct. 8, 2014 (3PM) - Long Island Bridge deemed imminently unsafe.
Oct. 8, 2014 (3:50 PM) - City declares immediate evacuation of island. Police block island access.
Oct. 8, 2014 (7PM) - Hundreds of residents relocated to emergency sites. Island services are terminated.
Jan. 2015 - Newly built Southampton Street Shelter opens near emergency sites.
April 2016 - Supportive Place for Observation and Treatment (SPOT) opens in South End.
Oct. 2016 - Opioid Urgent Care Center opens in South End.
Nov. 7, 2017 - Walsh defeats challenger Tito Jackson in Mayoral race.
January 1, 2018 - Mayor Walsh promises to re-build Long Island Bridge in Inauguration Speech.
Sept. 27, 2018 - State environmental board approves permit for bridge reconstruction

Displaced facilities and associated populations were primarily relocated to the Boston Medical Center area at the boundaries of the South End, Roxbury and Dorchester neighborhoods, as shown in Figures 2 and 3. This area was the site of the immediate re-location because it contained several facilities operated by the Boston Public Health Commission, which had just three hours to find new places to host the so-called “Long Island Refugees” (BHCHP 2014, Ramirez 2015a). In the immediate aftermath of the Long Island closure, 250 men slept on the basketball court at the Public Health Commission’s South End Fitness Center, 45 women slept on cots in the atrium of the Commission’s homeless clinic in the South End, and 20 others stayed in emergency cots at the Commission’s Wood-Mullen Shelter (Burrell 2014, Becker & Jolicoeur 2014). These temporary relocation facilities were eventually replaced by newly built shelter and renovated sites in the relocation area (Pressley 2015).

According to the city’s public health agency, closure of Long Island facilities resulted in “rapid changes... throughout Boston, particularly in the South End neighborhoods and the already busy intersection of Albany Street and Massachusetts Avenue” (BHCHP 2014). This part of Boston – along a stretch of Massachusetts Avenue containing the Boston Medical Center, neighborhoods of the South End and Lower Roxbury, and the mostly industrial Newmarket Square district – has long been home to a concentration of social service providers and methadone clinics, giving it the reputation of “Methadone Mile” (Daniel 2016). But existing residents and local employees reported that the quality-of-life in the neighborhood declined sharply after the Long Island Bridge closure. Following the opening of the Southampton Street Shelter, crime increased. Between January and October of 2015, violent crimes increased 30% and drug violations by 55% near the
The approximate stretch of Massachusetts Avenue called Methadone Mile, the site of Long Island services relocation, is colored in red. Long Island is outlined in black.

new shelter, while these crimes declined citywide (Abel 2015). These quantitative trends match qualitative accounts of the neighborhood change. One resident posted that “I’ve been periodically walking from my home in the South End to my business at Newmarket since 1988. the situation in 2015 is far worse than I’ve ever seen. I now walk up Albany St. rather than Mass Ave. because of the crowds... to avoid any drug trafficking. Also, the level of theft and break-ins in the Newmarket neighborhood is sky-rocketing” (Reilly 2016). Years later, residents, politicians, and the media have continued to blame the closure of the Long Island Bridge for exacerbating public safety and quality-of-life issues in the neighborhood (Karedes 2018, Jonas 2019, Singh 2019), and neighborhood associations have eyed re-opening the Long Island campus as integral to solving the neighborhood’s seemingly intractable homelessness and drug problems (Seth 2018a).

Ground zero of the crisis is the busy intersection of Melnea Cass Boulevard and Massachusetts Avenue, situated between Boston Health Care for the Homeless and the Wood Mullens Shelter to the north of the
intersection and the Southampton Street Shelter and two methadone clinics south of the intersection (Ramos & Allen 2016). To illustrate this, and the broader consequences of the neighborhood change, we downloaded images from Google Street View of the same plots of land at the intersection before and after the Long Island Shock. As Figure 4 shows, dozens of people loitering, and pervasive litter, are apparent after the closure of the Long Island Bridge. Other before-and-after images captured in Google Street View (Appendix Figure A2) show the removal of benches at nearby bus stops and the fencing off of a patch of grass on Melnea Cass Boulevard where people previously congregated, a move lampooned in local media with the headline “News 25 Investigates: Mayor’s controversial fence moves addiction problem across the street” (Rasmussen & Smith 2017). While differences in the photos may also be attributable to seasonal differences, these images reflect the neighborhood changes induced by the Long Island shock.

5The 2017 images are from July, while the 2013 images are from September. Google did not offer images in 2017 and 2013 from the same month.
Figure 4: Neighborhood Disorder: Evidence from Google Street View

Mass Ave. & Melnea Cass, 2013 (Before Long Island Shock)

2017 (After Long Island Shock)

Mass Ave. & Melnea Cass, 2014 (Before Long Island Shock)

2017 (After Long Island Shock)
The closing of the Long Island Bridge, and the consequent termination of the island’s facilities, increased the local density of homeless individuals and people who use drugs. The re-location of the displaced populations was not random, as they relocated to an area where the Boston Public Health Commission operated existing facilities. But that the re-location occurred at all, and the timing of the increased neighborhood disorder, is plausibly unrelated to the attitudes and behaviors of voters living near the re-location sites. As such, we argue that this event—the Long Island Shock—constitutes an as-if random increase in neighborhood disorder.

The Long Island Shock provides analytic leverage into the effect of neighborhood disorder on political behavior. Our primary measure of political behavior is geolocated, individual-level administrative voting records for every registered voter in Massachusetts. These data, which include gender, race and ethnicity, place of residence, and voting history, were organized and provided to the researchers by the political analytics firm L2. We supplement these data with citywide calls for services records, precinct-level electoral results, and home-ownership parcel data downloaded from the city assessor. We collected 311 non-emergency call data from the city of Boston’s website and 911 call data from the Boston Police Department via public records request.

For each registered voter in Boston, we calculate the Crow’s distances (straight line) in meters from their place of residence to the sites that saw an influx in homeless persons and drug users following the Long Island Shock. A respondent’s distance to the nearest site – the minimum of the distance to any of the sites – is our measure of exposure. With these data, we measure differences in political participation before and after the bridge closing as a function of proximity to the sources of neighborhood changes. Defining treatment (living close to the re-location sites) and control (living far from the re-location sites) by increasing distances, we measure differences in participation across a spectrum of definitions of proximity, avoiding problems of aggregation and scale common to geographic analysis (Openshaw 1983, White 1983). To test the effect of increased neighborhood disorder on vote choice, we examine changes in incumbent vote share with precinct-level electoral data from the city of Boston that we digitized and geocoded. We calculate the Crow’s distance of each voting precinct centroid to the relocation sites.

Following a Boston City Council report on the Long Island Bridge Closure (Pressley 2015), we define the scope of relocated sites as those shown in Table 1. While we measure distance to these specific sites, they are all within a few blocks of one another, and collectively serve as a measure of proximity to the increase in neighborhood disorder.

We test whether increased neighborhood disorder caused voters living close to the sites to vote at higher rates (compared to voters living farther away) in the immediate next statewide, national, and mayoral elections, in 2014, 2016, and 2017, respectively. For each type of election we compared turnout rates to the
immediately prior election of the same type, the 2010 midterm election, the 2012 presidential election, and the 2013 mayoral election. Our analysis is restricted to voters who lived in the same residence and were registered to vote in each election cycle. We identify these voters by restricting the analysis to voters in the L2 file whose registration date is prior to date of the first election in a given election pair. Voter registration dates are updated when voters change their registration, generally when they move residences. Limiting our analysis to non-movers omits people who moved residences in between elections. Moving is a more costly behavior than voting, so individuals who are motivated to move in response to increased neighborhood disorder are probably likely to respond politically as well. Therefore, limiting our results to non-movers downward biases our results toward null turnout effects.

To test our hypotheses, we employ a difference-in-differences design, estimating the change in turnout and vote share between like-elections before and after the shock to neighborhood disorder. Our unit of analysis for turnout is individual registered voters, and the unit of analysis for vote share is electoral precincts. We estimate the following average treatment effects:

$$\text{ATE} = \left[P(\text{Vote}_{t=2}|d<d^*) - P(\text{Vote}_{t=1}|d<d^*) \right] - \left[P(\text{Vote}_{t=2}|d>d^*) - P(\text{Vote}_{t=1}|d>d^*) \right]$$

In a linear regression, we estimate this ATE for turnout with the following equation, for voter i in election t:

$$\text{Turnout}_{it} = \alpha_i + \gamma_t + \beta[I(d_i < d^*) \cdot \gamma_t] + \epsilon_{it}$$

Here, α_i represents individual-level fixed effects, γ_t is a dummy for the treated period (or the change in turnout, on average, between election $t = 1$ and $t = 2$ for the untreated individuals). A voter’s distance to the closest relocation facility is denoted d_i. $I(d_i < d^*)$ is an indicator variable equal to one for individuals who live within the designated distance of any facility, thus delineating treated units. We estimate this equation at increasing distances of d^* (100, 200, 300, . . . , 1600 meters). Finally, ϵ_{it} is the idiosyncratic model error. The estimate for β – the change in turnout for treated units, relative to control – is our difference-in-differences estimator.

We also measure treatment as a continuous function of logged distance from the sites. We log distance
because we expect that the effect of proximity decays exponentially; i.e., marginal increases in distance from
the sites have less influence on the treatment the further away from the sites. That is, we estimate the
following:

\[\text{Turnout}_{it} = \alpha_i + \gamma_t + \beta [\log(d_i) \cdot \gamma_t] + \epsilon_{it} \]

We use a similar difference-in-differences approach to estimate the effects on vote share. In precinct \(p \),
election \(t \), the vote share received by the incumbent is modeled as follows:

\[\text{Incumbent Vote Share}_{pt} = \alpha_p + \gamma_p + \beta [I(d_p < 1 \text{ mile}) \cdot \gamma_t] + \Omega[\Lambda_i \cdot \gamma_t] + \epsilon \]

where \(\alpha_p \) represents a precinct fixed effect, \(\gamma_p \) represents an election fixed effect (i.e., the swing to Mayor
Walsh from 2013 to 2017 when \(d \) is zero), and \(\beta \) captures the extent to which the change in incumbent vote
share varies between the 24 precincts that lie within one-mile of the vector of facilities and the remaining
precincts in Boston (\(d_i \) is the minimum distance of every \(p \)th precinct centroid to any of the facilities). \(\Lambda_p \) is a
vector of precinct-level controls for representing average quantities from the voter file or relevant indicators
for particular districts/neighborhoods (more details below) where \(\Omega \) is a vector of coefficients corresponding
to each control.

We estimate equations for 3 election pairs: the 2010 and 2014 midterm elections, the 2012 and 2016
general elections, and the 2013 and 2017 Boston mayoral elections.\(^6\) For all models, we first estimate
the specification without co-variate controls. Second, we estimate specifications that use exact matching
to compare treated and control individuals on the following characteristics: race, age, gender, income,
home-ownership, and party identification. Age, gender and party identification are recorded directly in the
Massachusetts voter file. Race is imputed by L2 using an imputation method based on name, neighborhood,
socio-economic variables, and other demographic information. Income matching uses the average census
block group income category of the voter’s residence. We combined the voterfile data with property data
from the city of Boston to identify if a voter is homeowner. The exact-matching algorithm matches each
treated unit to all possible control units with exactly equal co-variate values (age is coarsened into 10-year
bins), creating subclasses in which all treated and control units have the same covariate values. We then
use the size of each subclass as weights in a Weighted Least Squares regression analysis while including
the matching variables as covariates. Standard errors are clustered at the individual level in all turnout

\(^6\)We do not analyze changes in voting between city council local elections in non-mayoral election years due to variation across city
council districts in challenges to incumbent city councillors. We also do not estimate changes in vote share between the 2010 and 2014
midterm elections because Boston’s electoral precincts were changed in 2011 following the decennial census.
We estimate a third specification to account for potential confounding from different municipal candidates running for election in 2013 compared to 2017. In 2013, Marty Walsh’s opponent, John Connolly, was an at-large City Councillor from West Roxbury, and turnout in that neighborhood was much higher in 2013 than 2017. In 2017, Mayor Walsh ran against Tito Jackson, the city councillor from District 7, which covers parts of the Roxbury, Dorchester, South End, and Fenway neighborhoods of Boston. Changes in voter turnout between 2013 and 2017 may be a function of different candidates running, and since the candidates receive disproportionate shares of their home district’s votes, a Jackson or Connolly effect may appear as an effect of proximity to the Long Island re-location sites. Therefore, we estimate a specification that matches on the same covariates as in the previous specification and includes “fixed-effects” for Boston’s city council districts and the West Roxbury neighborhood (which is not coterminous with any city council district). These fixed effects represent the average trend in turnout for these places and account for changes in voting behavior driven by the presence of neighborhood locals on the mayoral ballot in one election but not the other, as well as competitiveness of ward city council races concurrent with the mayoral election. This makes the comparison for these places “within-neighborhood,” a conservative approach that rules out the possibility that any of the changes in turnout between council districts and between West Roxbury and the rest of the city of Boston are due to distance from the relocation sites.

Causal inference in the difference-in-differences setup hinges on the parallel trends assumption that changes in political behavior between residents located near the relocation sites, and residents of matched gender, income, age, party identification, homeownership, and race who live further away, would have been similar in expectation had the Long Island Shock not occurred. In the Appendix (Figure A1), we examine pre-trends in turnout, finding that turnout rates moved in parallel between treatment and control areas prior to the shock.

Results

To further buttress our claim that the Long Island Shock caused an abrupt increase in disorder, and to provide some initial evidence that the change in disorder altered daily interactions with government, we first present

7. Our pre-analysis plan specified bootstrap standard errors. Results are not substantially or substantively different using either method, but the clustered standard errors tend to be larger than the bootstrapped ones, so we chose to report the more conservative clustered standard errors. We include bootstrapped standard errors in the Appendix Table A8.

8. Including fixed effects for all city council districts, instead of a single dummy for Tito Jackson’s district, deviates from our pre-registration. After receiving feedback about differential levels of competitiveness in ward city council races concurrent with the mayoral race, we were persuaded to use council district fixed effects. Results are substantively similar in sign, magnitude, and significance.

changes in requests for government services related to disorder. In the areas surrounding the relocation facilities, there was an uptick in 311 non-emergency requests for government services plausibly related to homelessness. As Figure 5 illustrates, the frequency of weekly service requests within one-mile of the relocation sites increased both relative to the rest of Boston and in absolute terms in the months following the October 2014 bridge closure. As these requests are “by definition a measure of the service demands that neighborhoods place on city governments” (White & Trump 2018), their increase is consistent with burdensome neighborhood changes. But 311 calls have at least two kinds of measurement error: conceptual (311 calls in these categories may not exactly map onto to disorder) and false-positive (311 calls can be made without basis). To mollify these concerns, we performed a parallel analysis of 911 calls, focusing on 911 calls for overdoses and “emotionally disturbed persons” (police terminology for calls responsive to erratic behavior and/or mental health emergencies) which we obtained by public records request. These are less susceptible to measurement error because they are more specific and because fraudulent calls are illegal. Weekly 911 calls for drug poisonings and emotionally disturbed persons in the vicinity of relocation sites increased in absolute terms and relative to the rest of Boston (Figure 5). A negative binomial regression finds significant evidence of a larger discontinuous jump within a mile of relocation sites for both 311 calls ($p < 0.01$) and 911 calls ($p < 0.01$) after the Long Island Shock (Appendix Table A3).

These changes may reflect both changes in neighborhood conditions and deliberate political mobilization. Consistent with this analysis, various neighborhood association minutes encourage residents to “call 911 when the need arises...it will increase statistics” (CSNA 2015) and “get dots on the map” (BFSNA 2016). Boston formed a special unit to respond to the high frequency of 911 overdose calls in the area (Atkinson 2017).

Having shown these changes in immediate political behavior, we next present results for the effect of the Long Island Bridge closing on turnout for voters living close to the re-location sites. Figure 6 presents the effect of the closing on the likelihood of voting in the next mayoral election with the treatment group defined as living within increasing distances from the re-locations sites. The number above each point estimate indicates the number of registered voters living within that distance – the treated sample. The estimates demonstrate that the neighborhood change following the Long Island Bridge closing caused increased turnout among proximate residents in the 2017 mayoral election relative to residents living farther away

9 Plausibly homelessness related 311 calls were identified by string searching the open-ended CLOSURE_REASON field in the data for the string “homeless” and using only calls in the set of call types corresponding to these explicitly designated homelessness calls. This process captured 8 call types out of the data’s total 216 call types, and subsets the data from about 1.3 million service requests to 160,000 service requests. Subsetting the data in this way helps deal with clearly unrelated shocks to 311 calls, such as periods of heavy snowfall. The 8 call types are “Requests for Street Cleaning”, “Ground Maintenance”, “Poor Conditions of Property”, “CE Collection”, “Illegal Dumping”, “General Comments For a Program or Policy”, “Housing Discrimination Intake Form”, and “Highway Maintenance”.

Figure 5: Spike in weekly 311 Calls and 911 Calls following Long Island Closure

Plots show predicted weekly counts of 311 calls (top) and 911 calls (bottom), with 95% confidence intervals, from negative binomial regressions with month fixed effects and linear and quadratic trends interacted with the date of the bridge closure. Points are connected by a Loess fit.

from the sites. The first plot displays the point estimates and 95% confidence intervals for the models without covariates. The second plot presents the estimates for our matching specifications. The third plot shows the point estimates for the specifications with both matching and separate trends by city council district and in West Roxbury. Except for the results with treatment defined as living within 300 meters of the sites, where the treated sample size is lowest, we find consistently significant ($p < .05$) positive effects on turnout across treatment definitions. Effect sizes range from approximately 5 to 9 percentage points, initially decreasing as treatment is defined by greater distances, stabilizing by about 800 meters.

Decreasing effects on turnout further away from the relocation sites suggest that the effect of neighborhood disorder increases with proximity. To formally test this hypothesis, we estimate models measuring the effect of treatment as a continuous function of logged distance from the sites. Table 2 reports the results from 3 specifications: without covariates, with covariates, and with covariates and the time trend interacted
with council district fixed effects and the West Roxbury neighborhood. Across models, voters are less likely to vote in 2017 compared to 2013 the greater the distance they live from the sites.10 The effect sizes are substantially similar across models.11 These results provide evidence in support of Hypothesis 3, that the effect on turnout is a function of distance to the sites.

While we observe effects of increased neighborhood disorder on mayoral election voting, we do not see such effects in statewide and national elections. Figure 7 shows the effect of proximity on changes in presidential turnout between 2016 and 2012 (top) and midterm voting between 2014 and 2010 (bottom) without any controls. The presidential election results are generally indistinguishable from zero, negative at lower distances but positive at greater distances. None of the midterm election estimates are statistically significant and hover around zero. The midterm and presidential specifications measuring the effect of treatment as a continuous function of logged distance from the sites also show small (no demographic controls) or null (with demographic controls) effects of distance on turnout. These results are shown in the Online Appendix.

10The 2017 coefficient is positive, but this is conditional on the distance being at zero (and the covariates being at their base categories, where applicable). Generally, mayoral turnout was lower in 2017 than 2013.

11These estimates and the estimates in the tests of hypothesis 1 are robust to a Bonferroni multiple comparisons test.
Taken together, these results show that voters mobilized politically in response to increased neighborhood disorder, but that this response was limited to local elections. The 5 to 9 percentage point effect on mayoral turnout is striking against baseline levels in local elections. In 2013, 38% of registered voters in the city of Boston voted in the mayoral election, and just 27.8% voted in the 2017 election.

The political effects were not limited to participation. Contrary to Hypothesis 2, proximate voters were also more likely to support the incumbent Mayor, other things equal. Across various council-district fixed
Table 2: Turnout Change as function of log distance

<table>
<thead>
<tr>
<th></th>
<th>Column (1)</th>
<th>Column (2)</th>
<th>Column (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>−0.126***</td>
<td>0.318**</td>
<td>0.338**</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.139)</td>
<td>(0.133)</td>
</tr>
<tr>
<td>2017 · log(Distance)</td>
<td>−0.036***</td>
<td>−0.026***</td>
<td>−0.032***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>2017 · West Roxbury</td>
<td></td>
<td></td>
<td>−0.052***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.009)</td>
</tr>
<tr>
<td>Covariates</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Council District Trends</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>430,444</td>
<td>430,444</td>
<td>430,444</td>
</tr>
<tr>
<td>R²</td>
<td>0.747</td>
<td>0.752</td>
<td>0.753</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.494</td>
<td>0.503</td>
<td>0.505</td>
</tr>
<tr>
<td>Residual Std. Error</td>
<td>0.355 (df = 215220)</td>
<td>0.352 (df = 215180)</td>
<td>0.351 (df = 215171)</td>
</tr>
</tbody>
</table>

Note: *p<0.1; **p<0.05; ***p<0.01

Table shows the coefficient estimates for the change in turnout as a function of the logged distance voters live from the relocation sites. Standard errors clustered at the individual level are shown in parentheses. Matching covariates in models 2 and 3 include voter race, age, gender, party identification, homeownership status, and the median income of the census block in which they live.
Figure 7: Effect of Proximity on Turnout at other scales (raw associations)

Presidential Turnout, 2016 vs 2012

Point estimates represent change in turnout (for treatment relative to control) under the definition of treatment as living within the distance indicated on the x-axis to the relocation sites. Error bars are 95% confidence intervals. Numbers above each estimate indicate the number of treated voters.

Midterm election turnout, 2014 vs 2010

effect specifications12 (Table 3), the swing towards incumbent Marty Walsh was more than 5 percentage points larger in precincts within one-mile of the relocation sites, including when adjusting for demographic covariates (Model 2) and adding an indicator for the West Roxbury neighborhood, home of Walsh’s previous

12The main specifications for vote choice differ from those in our pre-registration. A detailed explanation is provided in the Appendix.
Bar plots represent the change in Walsh vote share from 2013 to 2017 for Boston electoral precincts within 1 mile of the relocation sites (bottom) and beyond 1 mile (top). Error bars are 95% confidence intervals.

(2013) opponent (Model 3). To give a sense of the effect-size, Figure 8 illustrates the change in Walsh Vote share at precincts near and far away from the relocation sites and the uncertainty of these estimates using the parameters from Model 3; precincts whose geographic centers fell within one-mile of the relocation sites experienced about a 15 percentage point swing to Walsh, while those further away experienced about a 10 percentage point swing (his citywide swing was 13.8%). No such incumbent swing was observed between the 2016 and 2012 Presidential races (Appendix Table A15).\footnote{Precinct boundaries changed before the 2012 election, precluding a similar analysis of 2014 and 2010 vote share.}
Table 3: Mayoral Vote Share, 2017 vs 2013

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Walsh Swing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>< 1 Mile</td>
<td>8.698**</td>
</tr>
<tr>
<td></td>
<td>(3.558)</td>
</tr>
<tr>
<td>White %</td>
<td>−0.057</td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
</tr>
<tr>
<td>Hispanic %</td>
<td>−0.456***</td>
</tr>
<tr>
<td></td>
<td>(0.116)</td>
</tr>
<tr>
<td>Mean Age</td>
<td>1.414***</td>
</tr>
<tr>
<td></td>
<td>(0.176)</td>
</tr>
<tr>
<td>Low Income %</td>
<td>0.112</td>
</tr>
<tr>
<td></td>
<td>(0.164)</td>
</tr>
<tr>
<td>High Income %</td>
<td>1.888***</td>
</tr>
<tr>
<td></td>
<td>(0.334)</td>
</tr>
<tr>
<td>Black %</td>
<td>−0.366***</td>
</tr>
<tr>
<td></td>
<td>(0.093)</td>
</tr>
<tr>
<td>West Roxbury Dummy</td>
<td>31.428***</td>
</tr>
<tr>
<td></td>
<td>(2.728)</td>
</tr>
</tbody>
</table>

Council FE	Yes	Yes	Yes
Observations	253	253	253
R^2	0.519	0.814	0.881
Adjusted R^2	0.501	0.803	0.873
Residual Std. Error	14.349 (df = 243)	9.027 (df = 237)	7.237 (df = 236)
F Statistic	29.120*** (df = 9; 243)	69.275*** (df = 15; 237)	109.349*** (df = 16; 236)

Note: *p<0.1; **p<0.05; ***p<0.01

Table shows coefficient estimates for the change in support for Mayor Walsh (for treatment relative to control) from 2013 to 2017 for Boston electoral precincts. Treatment is defined as precincts within 1 mile of the relocation sites. Covariates are calculated at the precinct level from the voterfile data. Standard errors clustered at the precinct level are shown in parentheses.
Discussion

Neighborhood Disorder & Local Political Participation

These results indicate that a shock to neighborhood disorder leads to a substantively large increase in political participation. Residents living in neighborhoods proximate to the relocation sites responded to increased neighborhood disorder by voting at a higher rate in the subsequent Mayoral election than voters living further from the sites (Hypothesis 1). Moreover, the effect sizes were largest for voters who lived closest to the sources of neighborhood disorder (Hypothesis 3), consistent with geographic proximity capturing a change in everyday life on the street for residents that modulates the strength of the political response. Building on important work establishing the association between self-reported neighborhood disorder, attending community-meetings, and contacting public officials (Michener 2013), our study uses a compelling research design (Dunning 2010) to show how disorder affects voting behavior and everyday daily participation. As such, we have demonstrated how an important and salient dimension of social geography drives political behavior. While our quantitative analyses illustrate the impact on electoral politics, the political response to the Long Island Bridge closure was not limited to voting or requesting government services. Exposure to the affected areas has led residents and others to introduce legislation, hold protests, oppose the construction of new social services, attend city council hearings, and contact the mayor and other local officials to demand that the city government curb disorder, as detailed in the Appendix. In 2018, 900 people wrote letters in support of rebuilding the Long Island Bridge in an effort coordinated by the South End Forum, a group of neighborhood associations (Seth 2018a). This multifaceted political response shows how neighborhood disorder galvanizes voters to participate in politics on both intensive margins (more intense participation) as well as extensive margins (more people participating).

Another important finding is that increased neighborhood disorder influences participation and vote choice only in local elections. Proximity to the relocation sites did not structure turnout or vote choice in national and statewide elections. Thus, voters responded to local events – the decision to relocate city facilities for homelessness and addiction treatment – by participating in local politics and holding local politicians accountable. This contrasts with voter “attribution errors” posited in other contexts (Sances 2017, Achen & Bartels 2016). Instead of a mechanical anti-incumbent backlash across levels of government, the electoral response was nuanced, consistent with voters of sufficient rationality to identify the proper scale at which to direct action and the proper politicians to hold accountable (Larsen 2018). The power to curb neighborhood

\[14^{\text{In the Appendix, we detail analyses of heterogeneous treatment effects and placebo tests which explore and ultimately rule out racial threat as an alternative explanation. We also present results from a robustness check using randomization inference (comparing the observed result with thousands of hypothetical alternative relocation sites).}}\]
disorder in these Boston neighborhoods lies with the municipal government, which is responsible for local policing, litter control, public works and park maintenance and operates the Boston Public Health Commission and Boston Emergency Shelter Commission, which control the city's public homeless shelters, syringe distribution program, and drug treatment services.

In response to neighborhood problems such as increased disorder, existing residents can respond by passive acceptance, political action, or leaving the area (Orbell & Uno 1972). What are the conditions under which they choose political action? Information provision may be an important mediator between neighborhood change and voter decision-making (Hopkins 2010, de Benedictis-Kessner 2018). While neighborhood change often provokes NIMBY attitudes (Hankinson 2018), voters require sufficient knowledge to infer that undesirable neighborhood changes can be mitigated through increased political participation (Arceneaux & Stein 2006, Gasper & Reeves 2011). Our empirical design cannot disentangle the precise mechanisms behind the increased participation but, following this logic and our review of the case, we posit that local media, place-based neighborhood associations and business groups, and politicians informed voters about the connections between increased neighborhood disorder and the closure of the Long Island Bridge, on the one hand, and the role of government in ameliorating disorder on the other hand. Indeed, the creation of social capital to coordinate responses to disorder may be an important intermediate step in the effects on voting behavior. Consistent with this mechanism, analyses detailed in the Appendix use the Boston Neighborhood Survey to show that respondents who perceive more disorder in their communities are more likely to participate in community meetings.

When do Negative Shocks Benefit the Incumbent?

Why did voters closer to the re-location sites choose to reward Mayor Walsh? And how do these pro-incumbent results cohere with the increases in political participation? We argue that the Long Island Shock raised the salience of addiction and homelessness for voters near the relocation sites, who learned the role their government played in managing these issues in part as a consequence of this shock (de Benedictis-Kessner 2018). This increased salience resulted in higher levels of local participation that advantaged candidates like Walsh who were perceived to be qualified on these issues. Negative shocks provide insight into an incumbent's quality, which they can contrast with challenger quality (Ashworth et al. 2018). In the natural disaster literature, an effective incumbent response has been shown to produce electoral benefits (Healy & Malhotra 2009) in part by mobilizing supporters to turnout to vote (Chen 2013). And Walsh appears to have managed the Long Island Shock adequately, replacing treatment beds and responding to local complaints with additional police patrols, needle pickups (City of Boston 2015), street outreach to drug users (Becker
beautification efforts (Allen 2016, Kaeslin 2017), and providing an air-conditioned “day-center” (Marcelo 2017) to keep “some of the chaos off the street” (Rasmussen & Alulema 2018). On the broader opioid epidemic, Walsh added treatment referral services to the city’s 311 hotline, boosted appropriations for addiction treatment, expanded housing services to address chronic homelessness, and formed the only municipal Office of Recovery Services in the US (Becker 2016, Marcelo 2017).

Some anecdotal evidence reinforces the view that voters rewarded Walsh for effectively managing the bad hand he was dealt (Ashworth et al. 2018). Jonathan Scott, head of a drug rehabilitation organization, said the Mayor “has my full support and endorsement... the fact that we [replaced the beds lost on Long Island] in 2 and a half years was nothing short of a miracle” (Freyer 2017). Non-experts affected by the Long Island Shock emphasize that the Mayor has done a good job, even though their situation is bad. A CEO of a local trucking company explained that while conditions have worsened, she did not blame Walsh: “The mayor has tried very, very hard, and I think he has done a good job but I think what they need to do is open the island again...” (Becker 2017b). Moreover, Walsh may have benefited from prior credibility on the topics of addiction and homelessness that colored how voters perceived his response (van Zuylen-Wood 2016, Becker 2017b). Walsh had himself received treatment on Long Island and spoke about recovery from addiction in his 2013 Mayoral bid and the 2016 Democratic National Convention. This credibility has helped buffer Walsh against criticism of his management of the Long Island Shock. John McGahan, president of a local addiction treatment organization, said “When I hear people throwing rocks at him on this issue, it disturbs me, because I know how much he cares” (Becker 2017b). In contrast, the City Councillor who challenged Walsh previously worked as a representative for an opioid drug, undermining his campaign’s emphasis on the opioid crisis (O’Sullivan 2017). Therefore, voters likely saw Walsh as better equipped to address drug problems, a more important issue for voters in neighborhoods closer to the relocation.\footnote{In an interesting contrasting case, an emergency room doctor at Boston Medical Center unseated the area’s longtime state representative in a 2018 primary campaign focusing on his expertise in managing the district’s drug problems (Capelouto 2018, Boston Globe Editorial Board 2018).} This logic comports with partisan issue ownership and issue salience (Bélanger & Meguid 2008), though at play here is candidate issue ownership.

Limitations

There are several limitations to this study. One challenge to this paper and to studying disorder more generally is difficulty in measurement. Because our research design requires demonstrating that closure of the Long Island Bridge substantially increased disorder at the relocation sites, we have presented multiple forms of evidence consistent with an increase in disorder, including descriptions from local media, neighborhood...
association meeting minutes, reports from the city's public health agency and city council, official crime statistics, images from Google Street View, and original statistical analyses of non-emergency 311 calls and emergency 911 calls. Any one of these changes provides modest evidence of changes in disorder. But triangulating between these various forms of evidence suggests that closure of the Long Island Bridge caused significant neighborhood changes and was a salient event for the neighborhood’s existing residents. However, what is less clear is how to quantify this increase in disorder to make comparisons between this case and others, an important limitation. A second limitation concerns the case we study, an abrupt but persistent “shock” to disorder. Such shocks may operate differently from a more gradual neighborhood change (e.g. they be more salient), limiting the external validity of our inferences. That said, abrupt shocks to disorder occur with some frequency, usually tracking the dislocation of encampments of people who are homeless or use drugs (Orange 2013, Whelan 2018). A third limitation involves disentangling the political effects of a change in disorder from the government’s response to disorder (the presence of the Mayor and other city officials in the area and increased investment in government services like policing or needle pick-ups). This is not a unique problem for our study, as the political effects of other kinds of shocks (such as natural disasters) similarly depend on the government’s response (Healy & Malhotra 2009, 2010, Chen 2013). This issue is most acute for the incumbent vote share effects—it seems implausible that incumbent vote share would have increased near the relocation sites absent substantial efforts by the Mayor's office to mitigate disorder. With regards to participation, the presence of increases in non-voting forms of mobilization (neighborhood association organizing, protests, requests for government services) suggest that at least some of the mobilization response is due to changes in disorder itself, not solely to the actions of government officials, because these actions were temporally prior to any government response. We suspect that this extends partially to the voter turnout results, but admit that this is a tentative extrapolation, and we cannot fully decompose the turnout effect in this case. Still, our study provides a compelling glimpse into the political implications of disorder, an important and understudied phenomenon connected to ongoing drug and homelessness crises in North America. We hope future research advances our understanding of disorder by addressing these limitations.

Conclusion

This study shows that increased neighborhood disorder causes increased participation across a range of political behaviors. Voters living near the re-location sites were more likely to request government services, vote in the next mayoral election, and more likely to vote for the incumbent Mayor. They also engaged in less systematic behaviors including contacting elected officials, protesting (Irons 2017, Maniscalco 2017), organizing to restrict the construction of new social services (CSNA 2016, Seth 2018b, Daniel 2018), sub-
mitting letters in support of rebuilding the Long Island Bridge (Seth 2018a), and attending neighborhood association meetings (Daniel 2016). But the level of government mattered. While we observed widespread increases in local political participation, we did not find similar effects in national and state elections. The response was limited to the relevant, local scale. This contrast with “attribution errors” posited in other contexts motivates inquiry into the mechanisms by which neighborhood change provokes political action, including the informational roles of local elites and neighborhood associations.

Closure of the Long Island Bridge – and consequent relocation of homeless individuals, people with addiction, and social services to mainland Boston – provides insight into the political consequences of abrupt increases in neighborhood disorder. Boston is one of many cities dealing with highly concentrated – and politicized – homelessness and drug use (Kim 2017), and thus these results speak to a broader phenomenon of growing disorder in the shadow of addiction. Sue Sullivan of Boston’s Newmarket Square Business Association pointed out that “It’s not just here. Look at San Francisco. I have my interns looking at every major city, and nobody knows how to deal with this” (Sperance 2018). Indeed, growing problems with unsheltered homelessness have prompted declarations of “homelessness states of emergency” in major cities like Los Angeles, Portland, Sacramento, San Diego, and Seattle, along with the state of Hawaii and dozens of other municipal and county governments. Our results suggest that exposure to these crises will increase participation in local politics, but the electoral effect on incumbents will depend on the quality of their responses and of their challengers. The normative implications of these positive claims are ambiguous; by widening the participatory gap, increased participation among the less marginalized group could produce less equitable policymaking (Sances 2016).

Our discussion has focused on the political response of stably-housed residents near the re-location sites. But it seems appropriate to give the final words to the Long Island Refugees, the already-vulnerable people disrupted by the termination of the island’s facilities when its long-neglected bridge failed. We hope our research invites scholarship into the geographic factors that structure the services available for vulnerable people, such as proximity to existing neighborhoods and whether treatment services concentrate or diffuse vulnerable people. This has clear policy relevance. Federal law requires patients treated with methadone—the gold standard therapy for opioid addiction—make frequent (typically daily) visits to a specialized clinic, a unique burden that both clusters vulnerable people (potentially provoking NIMBY opposition) and limits access (Samet et al. 2018, de Benedictis-Kessner & Hankinson 2019). Despite these barriers, efforts to site new services can be successful (Lupick 2018), and future research could assess the conditions under which they succeed. The continued suffering on Boston’s “Methadone Mile” and beyond adds urgency to such work.

16In a 2016 survey of candidates in the San Francisco Bay region, the overwhelming majority believed easing homelessness was the region’s top priority (Villa & Noori 2016).
References

URL: https://static1.squarespace.com/static/57b884e0d2b857c2cf2dac69/t/57bd8c528419c2e71779a3be/1472040020912/2016-03-15+General+Meeting+Minutes.pdf
URL: https://www.bhchp.org/sites/default/files/field/image/LIS%20Fact%20Sheet_0.pdf

City of Boston (2015), ‘Mayor walsh deploys crews to clear boston's public spaces of hazardous, discarded

URL: https://web.archive.org/web/20180915224647/https://chestersquareneighbors.org/meeting-minutes/

Fowler, A. & Hall, A. B. (2018), ‘Do shark attacks influence presidential elections? reassessing a prominent finding on voter competence’, *The Journal of Politics* 0(0), 000–000.

URL: https://doi.org/10.1007/978-94-007-0753-5_71

URL: https://commonwealthmagazine.org/housing/breaking-down-operation-clean-sweep/

Key, V. (1949), Southern Politics in State and Nation, Knopf, New York.

URL: http://www.mysouthend.com/news///218552

URL: https://urlzs.com/et1XZ

Wilson, J. (1975), Thinking about crime, Basic Books (AZ).
